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Main question: How much are patents worth? Answering this question is important,

because it helps inform the debate about optimal patent length and design. For example,

are patents good tools for rewarding innovation?

• Qa: value of a patent at age a

• Goal of paper is to estimate Qa using data on their renewal. Qa is inferred from

patent renewal process via a structural model of optimal patent renewal behavior.

1 Behavioral Model

• Treat patent renewal system as exogenous – only looking at the European system

• For a = 1, . . . , L, a patent can be renewed by paying the fee ca

• Timing

– At age a = 1 patent holder obtains period revenue r1 from patent

– Decides whether or not to renew. If renew then pay c1 and proceed to age

a = 2

∗These notes rely on Matthew Shum’s lecture notes.
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– If don’t renew, lose patent and get 0.

– At age a = 2 patent holder obtain period revenue r2 from patent

– Decides whether or not to renew. If renew then pay c2 and proceed to age

a = 3

– And so on . . ..

• Let Va denote the value of a patent at age a

Va ≡ max
t∈[a,L]

L−a∑

a′=1

βa′R(a + a′) (1)

where

R(a) =





ra − ca if t ≥ a (when you hold onto the patent)

0 if t < a (after you allow the patent to expire)
(2)

and t is the age at which the agent allows the patent to expire. Hence R(a) denote

the profits from a patent during the a-th year.

• The sequence R(1), R(2), . . . is a controlled stochastic process – it is inherently

random, but also affected by the agents actions (i.e. renewing the patent).

• This type of problem is called an “optimal stopping” problem. Unlike Rust’s bus

engine paper, this is not a regenerative optimal stopping problem.

• Since the maximal age is finite, L, this is a finite-horizon problem. Most dynamic

problems are either (a) infinite-horizon, stationary problems or (b) finite-horizon,

non-stationary problems

• Stationarity means that the value functions and decision rules are time-invariant

functions of the state variables. Only get dependence on time through the values

of the state variables (e.g. mileage in Rust’s bus engine paper).

• State variable in this paper: ra – the single period revenue.
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• Finite-horizon problems are solved via backward recursion. Start with the last

period of the problem and work backwards. Value function is

Va(ra) = max {0, ra + βE[Va+1(ra+1)|Ωa]− ca} (3)

where the value of a patent Qa = ra + βE[Va+1(ra+1)|Ωa] and you choose to renew

if Qa > ca.

• Ωa is the history of revenue up to age a, or {r1, r2, . . . , ra}.

• Expectation is over ra+1|Ωa. The sequence of conditional distributions, Ga ≡
F (ra+1|Ωa), a = 1, 2, . . . , L is an important component of the model specification.

• Pakes assumes

ra+1 =





0 with prob. exp(−θra)

max{δra, z} with prob. 1− exp(−θra)
(4)

where density of z is qa = 1
σa

exp(−(γ + z))/σa and σa = φa−1, a = 1, 2, . . . , L − 1

and {δ, θ, γ, φ, σ} are the important structural parameters of the model.

• Pakes explains his choice behind the stochastic evolution of ra

1. Firm learns about the patent over time (continuing to spend money on devel-

opment)

2. May learn it is worthless – get 0

3. May not learn anything – so expectation is δra where δ < 1. Revenue is less

because others are innovating

4. May learn it is more valuable – z.

• Agent’s maximization problem: is the value of the patent Qa = ra+ “option value”

greater than the cost of renewing a patent ca.

• Get threshold values of ra, denoted r̄a, above which an agent renews (see figure 1).
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• Cutoff points are due to assumptions ensuring that Qa is increasing in ra – so that

Qa and ca only cross once.

• Specification also ensures that r̄a < r̄a+1 < r̄a+2 < . . . < r̄L−1

2 Implementation

The paper uses aggregate data

• For cohort j (year in which patents are granted), observe the sequence n(a, j), a =

fj, fj + 1, . . . , lj − 1, lj: # of cohort j patents which are not renewed at age a.

• fj is the first date at which a renewal fee is observed for cohort j (e.g. UK – first

renewal fee is required 6 years after patent is filed).

• lj is the last date at which a renewal fee is observed for cohort j.

• Have left and right censoring. Don’t know what happened in years before fj – only

see
∑fj

a=1 n(a, j). And don’t know what happened in years after lf .

• Note – model is fully parametric (although incorporates a flexible specification)

• Likelihood of the aggregate data is derived using Prob(tij = a), the prob. that an

individual patent i from cohort j is renewed up to age a.

Prob(tij = a) = Prob(ra < r̄a, ra−1 > r̄a−1, . . . , r1 > r̄1) (5)

=

∫ r̄a

−∞

∫ ∞

r̄a−1

. . .

∫ ∞

r̄1

f(ra, . . . , r1)dr1 . . . dra (6)

≡ π(a; cj) (7)

where f is the joint density of revenues and cj is the fee schedule in place for

patents in cohort j.
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• Similarly,

Prob(tij ≤ fj) =

fj∑
a=1

π(a; cj) ≡ A (8)

Prob(tij ≥ lj) = 1−
lj∑

a=1

π(a; cj) ≡ B (9)

• Log-likelihood function for the aggregate date, letting ω denote the vector of pa-

rameters is

l({n(a, j)}, ω) =
J∑

j=1

lj∑

a=fj

log π̃(a; cj)n(a, j) (10)

where

p̃i(a; cj) =





π(a; cj) if fj < a < lj

A if a ≤ fj

B if a ≥ lj

3 Estimation Summary

Use a nested algorithm

1. Inner loop: at current parameter values ω̂, solve the dynamic problem and obtain

the sequence of thresholds, r̄1, . . . , r̄L−1

2. Outer loop: for the revenue cutoff values, evaluate the log-likelihood function. This

is a complicated integral, evaluated by simulation.
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4 Computational Details

4.1 Inner Loop

• Solve for r̄1, . . . , r̄L− 1 by numerical backwards induction. There are many ways

to do this. The brute force way (and most simple) is discretization.

• Assume at each age a, returns take values within [0, R̄]. Consider a grid of M points

over this interval. We will compute the value function V1(r; ω), . . . , VL−1(r; ω) only

on these M points. For values between points, we will approximate the value

function via interpolation.

• Specifically:

– Start with final period L,

VL(rL; ω) = rL (11)

for all rL because there are profits and no chance for renewal after age L (b/c

it is off patents, and assume others jump in)

– Go to period L− 1

VL−1(rL−1; ω) = max
{
0, rL−1 + ErL|rL−1

VL(rL; ω̂)− cL−1

}
(12)

= max
{
0, rL−1 + ErL|rL−1

rL − cL−1

}
(13)

where ErL|rL−1
rL is evaluated using the assumed parametric structure dis-

cussed earlier.

So for each rL−1 on the M grid points, you calculate VL−1.

Note – in this process you will also uncover the threshold value of r̄L−1 (or

determine it lies between 2 grid points).

– Now go to period L− 2

VL−2(rL−2; ω) = max
{
0, rL−2 + ErL−1|rL−2

VL−1(rL−1; ω̂)− cL−2

}
(14)

(15)
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– For values of VL−1(rL−1; ω̂) between the grid points, approximate the value

with interpolation (e.g. a straight line).

– Repeat this procedure for all periods. Will result in all the value functions

and threshold values.

4.2 Outer loop

• With the cutoff rules (i.e. optimal decision rules), we can simulation the likelihood

function.

• For s = 1, . . . , S (where S is the number of simulation draws)

1. Draw a sequence of returns rs
1, r

s
2, . . . , r

s
L according the assumed parametric

specification. Start by drawing rs
1 and then drawing rs

2 given rs
1, etc.

2. Given this sequence, figure out the drop out age ts, which equals the first a

at which rs
a < r̄a(ω̂).

3. Then, for all a = 1, . . . , L− 1, you can approximate

π(a; c) ≈ 1

S

S∑
s=1

1(ts = a)

4. Finally, perform simulated maximum likelihood using the above approxima-

tion for π(a; c).
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