
Demand in Differentiated-Product Markets – a review

Spring 2009

Finishing up differentiated-product analysis

1. Identification

2. Review of BLP – outline of estimation

• nested fixed-point routine

• variation in the data

• instruments

3. Examples of BLP
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Identification

• In these discrete choice models, identification means for every vector of parameters

there is a unique vector of choice probabilities.

• If two different vectors of parameters lead to the same vector of choice probabilities,

then can’t distinguish the true underlying model

• With logit, have a clear mapping:

• Same logic with BLP, just more complicated

• identification relies on parametric assumptions (e.g. T1EV for iid error term).

The idea is that the parametric forms are flexible, and so can approximate true

underlying indirect utility function.

• Not that much work done on pushing towards nonparametric identification (men-

tion a few papers at end)
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Example: Logit case

One simple case of inversion step is the MNL case:

ŝj(δ1, . . . , δJ) =
exp(δj)

1 +
∑J

k=1 exp(δk)
(1)

The system of equations for matching predicted and actual is (after taking logs)

log(s1) = δ1 − log(1 +
J∑
k=1

exp(δk)) (2)

... (3)

log(sJ) = δJ − log(1 +
J∑
k=1

exp(δk)) (4)

log(s0) = δ0 − log(1 +
J∑
k=1

exp(δk)) (5)

which gives us

δj = log(sj)− log(s0) (6)

So in the second step, run an IV regression

log(sj)− log(s0) = Xjβ − αpj + ξj (7)

To calculate s0 need to make an assumption about the total size of the market! Not

always innocuous.
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BLP routine

indirect utility function, person i, product j

uij = Xjβ + ξj − αpj +
∑
k

σkνikxjk + εij (8)

where xjk are elements of the vector Xj.

Can separate the parameters to be estimated in two groups, linear parameters θ1 =

{β, α} and non-linear parameters θ2 = σ.

Estimation routine

1. Before estimation – pick # of consumer (e.g. N = 50) and draw their individual

tastes, νij.

2. Outer loop – searching over θ2 to minimize the criterion function (i.e. the mo-

ments). So pick an initial guess of non-linear parameters, θ̂2, and compute µ(θ2) =∑
k σkνikxjk.

3. Inner loop – find δj such that model prediction of shares exactly match data solve

for θ1

(a) pick an initial guess of δj

(b) compute (via simulation)

ŝj =

∫
exp(δj + µij)

1 +
∑

h exp(δh + µih)
dF (9)

ŝj =
1

N

N∑
i=1

exp(δj + µij)

1 +
∑

h exp(δh + µih)
(10)

(c) update δ via:

δ′ = δ + log(s)− log(ŝ(δ, θ2)) (11)

(d) recompute predicted market shares, repeat until converge to a unique δ (proof

relies on Brouwer’s fixed-point theorem) that equates predict with actual mar-

ket share. This is an important part of identification
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4. With δ̂ run 2SLS to compute θ1 and infer ξ. Calculate the criterion

G(θ1, θ2)
′WG(θ1, θ2) (12)

where W is a weighting matrix. (More work if also computing the supply side —

but fits in here)

5. Go back to the outer loop, choose another θ2, etc.

weighting matrix

• Normally use a 2 step procedure

• In the first stage, set W equal to the identity matrix. So every moment is equally

weighted, and just squaring and summing across moments. Label resulting param-

eters which minimize moments θI and the unobserved characteristics as ξI .

• In second stage, use the first stage results to compute the optimal weighting matrix.

A = E[Z ′ξIξ
′
IZ] (13)

W = A−1 (14)

Note – sometimes can’t invert the full matrix – then just use variance terms.

There is a large literature on optimal weighting matrices — above the “standard”

method, but there are other techniques.

Variation in the data

• What kind of variation in the data will allow for precise estimates?

• Need to see repeated cross-sections with variation in market shares

• For example, BLP (1995) has around 10 years, where goods entered and exited.

Entry and exit really generates the necessary variation. Only having price change

sometimes is not enough, b/c relative prices may not change much. Recall this is

an age-old problem. E.g. work on consumer choice of banks has run into problems

b/c interest rates on deposits hardly vary over time or across regions.
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• Having both a demand and supply side generates smaller standard errors – the

extra structure on the problem helps estimation (as opposed to only estimating

the demand side).

• As with all empirical work, start simple (regular logit) and slowly build in com-

plexity. In standard errors are too large with regular logit, hard to see why they

would shrink with complexity.

• Linear parameters are easy to estimate, but adding non-linear parameters can

dramatically increase the search time in the outer loop.

Instruments

• Problem: firms & consumers observe ξ and so expect ξ and price to be correlated.

But the moment condition is that E[ξ|X] = 0.

• See Nevo (2001) for a good discussion

• Usual instruments are other products characteristics

• charj → pj → pk so charj should be correlated with pk.

• Assumed with characteristics are exogenous, so no correlation with charj and ξk.

• People usually fine with these instruments, but do have to worry about this as-

sumption is looking at longer periods of time or products which evolve rapidly.

• In practice, use aggregates of other products’ characteristics (e.g. mean of all other

firms’ products characteristics).
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On the frontier . . .

1. “A Simple Nonparametric Estimator for the Distribution of Random Coefficients

in Discrete Choice Models” by Patrick Bajari, Jeremy Fox, Kyoo il Kim & Stephen

Ryan

Getting away from the parametric identification of these BLP-style models (and

other random coeff. models). Addressing the usual practice of assuming σ is

normally distributed.

Also some working papers by Steve Berry and Elie Tamer.

2. “Improving the Numerical Performance of BLP Static and Dynamic Discrete Choice

Random Coefficients Demand Estimation” Jean-Pierre Dube, Jeremy Fox & Che-

Lin Su

The double loop for BLP introduces complexity to the code, which increases the

probability of errors and so the probability of incorrect results. They introduce a

new estimating technique – minimization with constraints.

Nested fixed-point

min
θ
g(s−1(S; θ))′Wg(s−1(S; θ)) (15)

New approach

min
θ,ξ

g(ξ)′Wg(ξ) (16)

subject to: s(ξ, θ) = S (17)

3. Dynamic consumer demand models – we’ll see later in the semester.
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